
Гидравлический расчёт теплосети (Версия 9.1) Программный модуль:

Алгоритм программного модуля выполнен на основании существующей методики (СНиП 2.04.07-86):

 $R=6,27\cdot 10^{-3}\cdot \lambda\cdot \frac{G^2}{D_{\circ}^5\cdot
ho_{\circ}}$, мм.вод.ст./м Удельная потеря напора:

 λ – коэффициент гидравлического трения; G - расход теплоносителя (воды): $G = Q \cdot g$, т/ч;

Q – расход тепловой энергии, Гкал/ч; g - расход теплоносителя на 1 Гкал: $g = \frac{1000}{\Lambda T}$, т/Гкал

 D_p – расчётный внутренний диаметр трубопровода, м; $\
ho_{_{\! g}}$ – плотность воды (принята 958 кг/м 3);

 $\Delta\mathsf{T}\,$ – разность температур теплоносителя в подающем и обратном трубопроводе.

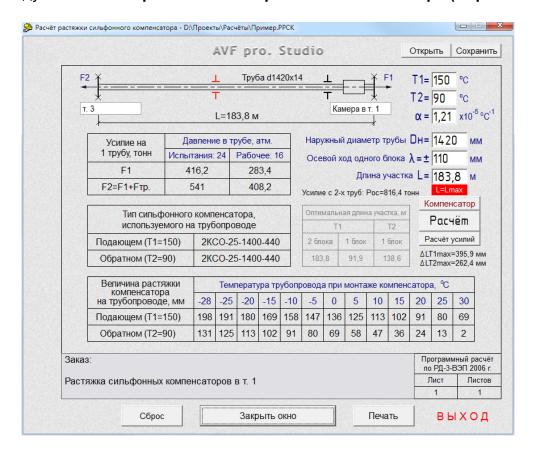
 $\lambda = 0.11 \cdot \left(\frac{K_e}{D_p} + \frac{68}{Re} \right)$ Коэффициент гидравлического трения:

где: Ке – эквивалентная шероховатость трубы (принята 0,5 мм); Re - число Рейнольдса.

 $Re = \frac{V \cdot D_p}{2.9419 \cdot 10^{-7}}$ где: V – скорость теплоносителя в трубопроводе, м/с. Число Рейнольдса:

Скорость теплоносителя: $V = \frac{0.354 \cdot G}{D_{\rm p} \cdot \rho_{\rm p}}$, м/с Потеря напора в одной трубе: $\Delta H = \frac{1}{1000} R \cdot L_{\rm np.}$, м

где: $L_{\text{пр.}}$ – приведенная длина участка: $L_{\text{пр.}} = L \cdot K_{\text{пр.}}$, м


 ${\sf K}_{\sf np.}$ – коэффициент приведения (приближенно учитывает местные сопротивления, ${\sf K}_{\sf np.}$ =1,4 – 1,9).

Граничные условия итераций: $R <= R_{max}$; $V <= V_{max}$; $H_{\kappa oh.} => H_{min}$

H_{кон.} – располагаемый напор в конце участка.

Резуметаты ранентов пр данный программе верны верны верны верны верны верны верны верны зам. пак Ивс верны верны

Программный модуль: Расчёт растяжки сильфонного компенсатора (Версия 11.1)

Алгоритм программного модуля выполнен на основании существующей методики (РД-3-ВЭП 2006 г.):

Максимальное расстояние между неподвижными опорами участка теплосети с осевыми сильфонными компенсаторами, определяется по формуле:

$$L_{max} = 0.9 \cdot \frac{n \cdot 2\lambda}{\alpha \cdot \left(T_{max} - T_{mou min}\right)} , M$$

где: n – количество блоков в компенсаторе (n=1, 2);

λ – амплитуда (±) осевого хода одного блока компенсатора, м;

 α – коэффициент линейного расширения материала (для CT20 α =1,21·10⁻⁵ °C⁻¹);

T_{max} – максимальная рабочая температура трубопровода, °C;

 $T_{\text{мон.min}}$ – минимальная температура трубопровода при монтаже компенсатора (принята -28°C); 0,9 – коэффициент запаса (запас 10%).

Величина растяжки сильфонного компенсатора перед установкой определяется по формуле:

$$\Delta L = \alpha \cdot L \cdot \left(\frac{1}{2} \left(T_{\text{max}} + T_{\text{moh.min}} \right) - T_{\text{moh.}} \right) , M$$

где: T_{max} – максимальная рабочая температура трубопровода, °C;

 $T_{\text{мон.}}$ – температура трубопровода при монтаже компенсатора (изменяется от –28 до 30°С);

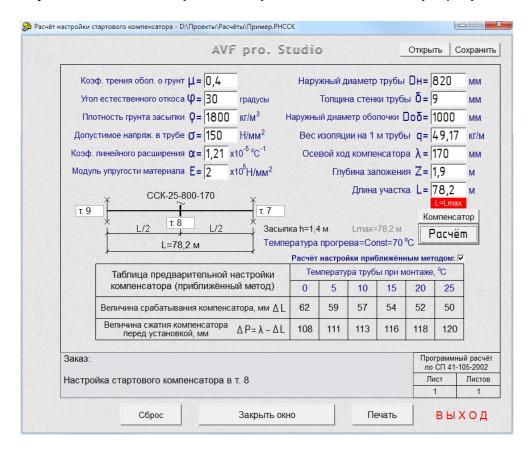
 $L - длина участка (L <= L_{max}), м.$

Усилие от одного трубопровода на неподвижную опору: $F1 = \frac{1}{10} \Big(P_{max} \cdot 10^5 \cdot S_{9\varphi.}^{cun\varphi.} + \lambda \cdot c \Big) \quad , \text{ кг}$

где: P_{max} – максимальное давление в трубопроводе, атм.; $S_{\text{эф.}}^{\text{силф.}}$ – эффективная площадь сильфона, M^2 ;

λ – амплитуда (±) осевого хода одного блока (одного сильфона), мм;

С – жёсткость одного блока (одного сильфона), Н/мм.


Усилие от одного трубопровода на противоположную неподвижную опору: $F2 = F1 + F_{\tau n}$, кг

где: F_{тр.} – суммарная сила трения в подвижных опорах, кг.

$$F_{TD.} = \mu \cdot P_{z}$$
 , кг

где: $\;\mu$ – коэффициент трения в подвижных опорах (принят 0,3); $\;\mathsf{P}_{\mathsf{z}}$ – вес трубопровода длиной L , м.

Программный модуль: Расчёт настройки стартового компенсатора (Версия 9.1)

Алгоритм программного модуля выполнен на основании существующей методики (СП 41-105-2002):

Максимальное расстояние между неподвижными опорами (реальными или мнимыми) участка теплосети со стартовыми компенсаторами (бесканальная прокладка), определяется по формуле:

$$L_{max} = 0.8 \cdot rac{\sigma_{ extstyle don.} \cdot S_{ extstyle ct. extstyle tp.}^{ extstyle cev.}}{f_{ extstyle tp.}}$$
 , м

где: $\sigma_{\text{доп.}}$ – предельно допустимое напряжение в трубе ($\sigma_{\text{доп.}}$ =150 H/мм 2);

 $S_{\text{ст.тр.}}^{\text{сеч.}}$ – площадь поперечного сечения стенки трубы, мм 2 ;

 $f_{\text{тр.}}$ – удельная сила трения оболочки трубы о грунт, Н/м.

$$f_{\text{Tp.}} = \mu \cdot \left(\left(1 - 0.5 \cdot \sin \varphi \right) \cdot \rho \cdot Z \cdot \Pi \cdot D_{\text{of.}} + q \right) , H/M$$

где: μ – коэффициент трения оболочки о грунт (принят 0,4);

 Φ – угол естественного откоса грунта (принят 30°);

 ρ – плотность грунта, H/м³;

Z – глубина заложения трубопровода (расстояние от поверхности земли до оси трубопровода), м;

 Π – число Π и (3,14159265359);

D_{об} - наружный диаметр оболочки трубопровода, м;

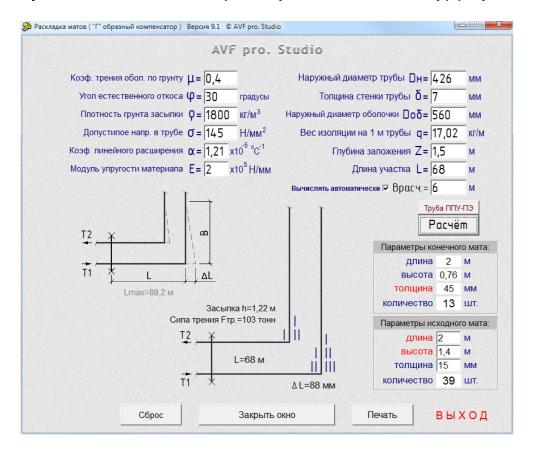
q – удельный вес трубопровода, Н/м.

Величина сжатия компенсатора при увеличении температуры трубопровода:

$$\Delta L = \alpha \cdot L \cdot \left(T_{\text{пр.}} - T_{\text{мон.}} \right) - \frac{f_{\text{тр.}} \cdot L^2}{4 \cdot E \cdot S_{\text{ст.тр.}}^{\text{сеч.}}} \quad , \, \text{м}$$

где: α – коэффициент линейного расширения материала (для Cт20 α =1,21·10⁻⁵ °C⁻¹);

 $T_{\text{пр.}}$ – температура прогрева ($T_{\text{пр.}} = \text{Const} = 70 \,^{\circ}\text{C}$);


 $T_{\text{мон.}}$ – температура трубы при монтаже (изменяется от 0 до 25°С); L – длина участка (L<=L_{max}), м;

 $E - модуль упругости материала (для стали 20 <math>E=2.10^5 \, H/мм^2$).

Формула приближённого метода: $\Delta L = \frac{1}{2} \alpha \cdot L \cdot (T_{\text{max}} - T_{\text{мон.}})$, м

Величина сжатия компенсатора перед установкой на трубопровод: $\Delta P = \lambda - \Delta L$, м

Программный модуль: Раскладка матов («Г» образный компенсатор) (Версия 9.1)

Алгоритм программного модуля выполнен на основании существующей методики (СП 41-105-2002):

Максимальное расстояние между неподвижной опорой (реальной или мнимой) и «Г» образным компенсатором при бесканальной прокладке теплосети, определяется по формуле:

$$L_{max} = \frac{\sigma_{\text{доп.}} \cdot S_{\text{ст.тр.}}^{\text{сеч.}}}{f_{\text{тр.}}} \quad \text{, M}$$

где: $\sigma_{\text{доп.}}$ – предельно допустимое напряжение в трубе (для стали 20 $\sigma_{\text{доп.}}$ =145 H/мм 2);

 $S_{\text{ст.тр.}}^{\text{сеч.}}$ – площадь поперечного сечения стенки трубы, мм 2 ;

 $f_{\text{тр.}}$ – удельная сила трения оболочки трубы о грунт, Н/м.

$$f_{TD} = \mu \cdot ((1 - 0.5 \cdot \sin \varphi) \cdot \rho \cdot Z \cdot \Pi \cdot D_{QG} + q)$$
, H/M

где: μ – коэффициент трения оболочки о грунт (принят 0,4);

 Φ – угол естественного откоса грунта (принят 30°);

 ρ – плотность грунта, H/м³;

Z – глубина заложения трубопровода (расстояние от поверхности земли до оси трубопровода), м;

 Π – число Π и (3,14159265359);

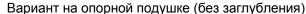
D_{об} - наружный диаметр оболочки трубопровода, м;

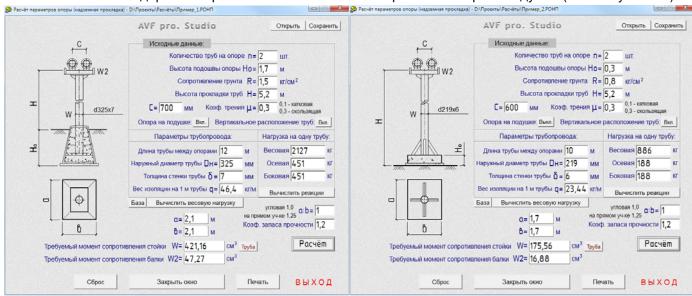
q – удельный вес трубопровода, Н/м.

Величина температурного удлинения трубопровода при бесканальной прокладке:

$$\Delta L = \alpha \cdot L \cdot \left(T_{max} - T_{MOH.min} \right) - \frac{f_{Tp.} \cdot L^2}{2 \cdot E \cdot S_{CT.Tp.}^{ceq.}} \quad \text{, M}$$

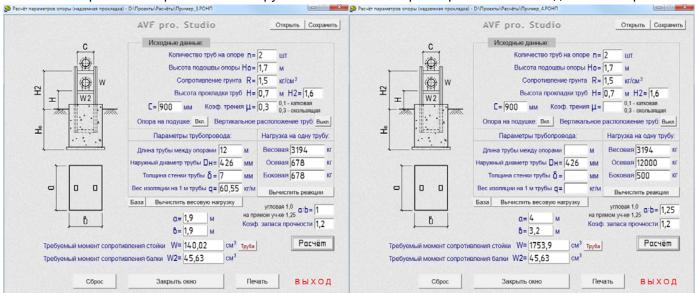
где: α – коэффициент линейного расширения материала (для стали 20 α =1,21·10⁻⁵ °C⁻¹);


 $L - длина участка (L <= L_{max}), м;$


T_{max} – максимальная рабочая температура трубы (принимается по T1=130°C);

T_{мон min} − минимальная температура трубы при монтаже (принята − 0°С);

Программный модуль: Расчёт параметров опоры (надземная прокладка) (Версия 8.1)


Стандартный вариант

Вертикальное расположение труб

Вариант расчёта как неподвижной опоры

Алгоритм программного модуля выполнен на основании существующей методики:

1. Расчёт стойки

Требуемый момент сопротивления стойки:

$$W_{\text{общ.}} = \frac{100 \cdot M}{0.9 \cdot \sigma_{\text{доп.}}} \quad \text{, cm}^3$$

где: М – суммарный момент, действующий на стойку опоры, кгм;

 $\sigma_{\text{доп.}}$ – предельно допустимое напряжение в сечении конструкции стойки опоры, кг/см 2 ;

Суммарный момент: $M = F_{rop.} \cdot H$, кгм

где: F_{гор.} – суммарное горизонтальное усилие, действующее на высоте H;

Н – высота стойки.

Для подвижной опоры: $F_{zop.} = \mu \cdot P_z$, кг

где: μ – коэффициент трения в подвижной опоре;

Р₇ – вертикальная нагрузка на опору.

$$P_{z} = n \cdot L \cdot q$$
 , KT;

где: n – количество труб на опоре; L - длина трубопровода между опорами, м;

Q – удельный вес трубопровода, кг/м.

2. Расчёт габаритов фундамента опоры на смятие грунта

Условие устойчивости опоры: $\sigma_{\rm rp.} => \sigma_{\it pacu.}$, кг/см²

где: $\sigma_{\rm rp.}$ – допустимое напряжение в грунте (сопротивление грунта), кг/см²;

 $\sigma_{\text{pacy.}}$ – напряжение в грунте, создаваемое фундаментом опоры:

$$\sigma_{\text{pacч.}} = \frac{\Sigma P}{S} + \frac{M_x}{W_y} + \frac{M_y}{W_x} \quad \text{, } \kappa \text{r/cm}^2$$

где: ΣP – суммарная весовая нагрузка (по оси Z): $\Sigma P = P_z + S \cdot H_0 \cdot \rho_{\text{бет.}}$, кг

S – площадь подошвы опоры: $S = a \cdot b$, M^2 ; $a \cdot b$ - габариты фундамента опоры;

Н₀ – высота фундамента опоры, м;

 $\rho_{\text{бет.}}$ – плотность бетона, кг/м³;

 $M_{_{X}}$ – момент, действующий на опору в плоскости XZ, кгм;

 $M_{_{V}}$ – момент, действующий на опору в плоскости YZ, кгм;

 $W_{x}\,$ – момент сопротивления подошвы опоры в плоскости XZ, ${\rm M}^{3};$

 $W_{V}^{}$ – момент сопротивления подошвы опоры в плоскости YZ, м 3 .

(осевые нагрузки вдоль оси X, боковые вдоль оси Y, вертикальные вдоль оси Z)

$$\begin{split} W_x &= \frac{a \cdot b^2}{6} \quad , \quad \mathsf{M}^3 \qquad \qquad W_y = \frac{b \cdot a^2}{6} \quad , \, \mathsf{M}^3 \\ M_x &= F_x \cdot \left(H + H_0\right) \quad , \, \mathsf{K}\Gamma\mathsf{M}; \qquad M_v = F_v \cdot \left(H + H_0\right) \quad , \, \mathsf{K}\Gamma\mathsf{M} \end{split}$$

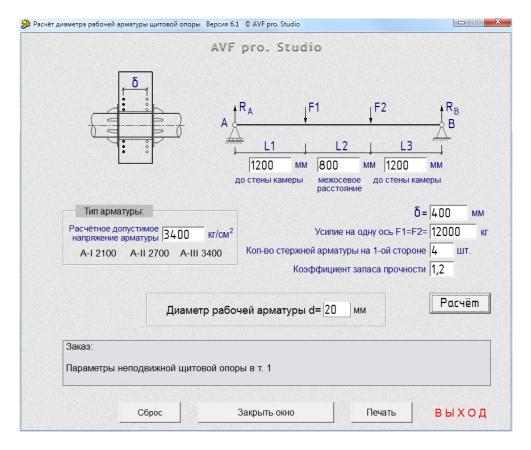
где: F_X – усилие на опору, действующее на высоте H вдоль оси X, кг;

 $\mathsf{F}_{\mathsf{y}}\,$ – усилие на опору, действующее на высоте H вдоль оси Y, кг;

H – высота стойки, м; H_0 - высота фундамента опоры, м.

3. Проверочный расчёт габаритов фундамента опоры на опрокидывание

Условие устойчивости: $\;M_{\chi} < M_2^{\chi}\;$ и $\;M_{\psi} < M_2^{y}\;$, кгм


где: M_2^X – момент от суммарной весовой нагрузки, действующий в плоскости XZ, кгм;

 M_2^y – момент от суммарной весовой нагрузки, действующий в плоскости YZ, кгм.

$$M_{_2}^{_x} = \Sigma \mathrm{P} \cdot \frac{1}{2} a$$
 , KFM $M_{_2}^{_y} = \Sigma \mathrm{P} \cdot \frac{1}{2} b$, KFM

где: ΣP – суммарная весовая нагрузка (по оси Z); а и b – габариты фундамента опоры.

Программный модуль: Расчёт диаметра рабочей арматуры щитовой опоры (Версия 6.1)

Алгоритм программного модуля выполнен на основании существующей методики:

Расчётный диаметр рабочей арматуры:

$$d = \sqrt{\frac{4 \cdot S_1^{apm.}}{\Pi}}$$
 , MM

где: $S_1^{\text{арм.}}$ – площадь поперечного сечения одного стержня, мм 2 ;

 Π – число Пи (3,14159265359).

Площадь поперечного сечения одного стержня:

$$S_1^{apm.} = \frac{S_{obul.}^{apm.}}{n}$$
 , мм²

где: $S_{\text{обш.}}^{\text{арм.}}$ – общая требуемая площадь поперечного сечения всех рабочих стержней, мм 2 ;

n – количество рабочих стержней.

$$S_{\text{общ.}}^{\text{арм.}} = \frac{M_{\text{max}} \cdot 100}{\sigma_{\text{ДОП.}} \cdot \delta} \quad \text{, MM}^2$$

где: M_{max} – максимальный момент, действующий на щит опоры, кгм;

 $\sigma_{\text{доп.}}$ – предельно допустимые напряжения в рабочем стержне, кг/см²;

$$\delta = \delta_{\text{\tiny LLMTa}} - 0.1$$
 , $_{M}$

где: $\delta_{\text{иита}}$ – толщина щита, м.

Программный модуль: Расчёт диаметра спускного устройства (Версия 8.1)

Левая ветка Параметры магистрального трубопровода:				Правая ветка		
				Параметры магистрального трубопровода:		
Наружный д	иаметр тру	бы Dн= 325	ММ	Наружный диа	метр трубы Dн=	426 мм
Толщина стенки трубы $\delta = 7$			ММ	Толщина с	тенки трубы δ=	7 мм
Į	тка L= 25	М	Дг	ина участка L=	15 м	
Уклон трубопровода i= 0,002 м/м			Уклон т	рубопровода ј=	0,002 M/	
Пе	репад отме	ток Н=	м	Пере	епад отметок Н=	М
Сброс	Участ	ок 4-5 До	обавить	Сброс	Участок 5-6	Добавить
Количество участков: 3				Количество участков: 4		
Суммарная длина участков L=75 м				Суммарная длина участков L=60 м		
Суммарный перепад отметок Н=0,15 м				Суммарный перепад отметок Н=0,12 м		
Внутренний д	иаметр спу	скного устрой	іства, мм:	Внутренний д	иаметр спускного	устройства, м
с одной трубы	d1= 34	с двух труб d	12= 48	с одной трубы	d1=[43] с двух	труб d2= 61
Внутренний ,				обслуживающего к труб d2=[78	о обе ветки:	Время спуска t= 2
Заказ:	скного уст	ройства в т.	9			Расчёт

Алгоритм программного модуля выполнен на основании существующей методики (СНиП 2.04.07-86):

Диаметр штуцера для спуска воды из секционируемого участка трубопровода, имеющего уклон в одном направлении, определяем по формуле:

$$d = d_{\Pi p.} m \cdot n \cdot \sqrt[4]{\frac{\sum L}{i_{\Pi p.}}} \quad , \ \mathsf{M}$$

$$d_{\Pi p.} = \frac{\sum_{k}^{j=1} d_j L_j}{\sum_{L}} \quad , \, M$$

$$i_{\text{np.}} = \frac{\sum_{j=1}^{j=1} i_j L_j}{\sum_{j=1}^{j} L_j} \quad \text{, M}$$

k – количество участков;

n – коэффициент, зависящий от времени спуска;

т – коэффициент расхода арматуры (для задвижек т=0,011).

Диаметр штуцера спускного устройства обслуживающего две ветки (правую и левую) определяется по формуле:

$$d_{\text{общ.}} = \sqrt{d_{\text{пр.}}^2 + d_{\text{лев.}}^2}$$
 , м

где: d_{пр.} – диаметр штуцера для правой ветки;

d_{лев.} – диаметр штуцера для левой ветки.